Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(hd(cons(X, Y))) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(hd(x1)) = 2 + 2·x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = x1   
POL(tl(x1)) = 2·x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(nats) → mark(adx(zeros))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(hd(x1)) = 2·x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 1   
POL(s(x1)) = x1   
POL(tl(x1)) = 2·x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(tl(cons(X, Y))) → mark(Y)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(hd(x1)) = 2·x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = x1   
POL(tl(x1)) = 1 + x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

TL(mark(X)) → TL(X)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(adx(X)) → ACTIVE(adx(mark(X)))
MARK(incr(X)) → INCR(mark(X))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
HD(active(X)) → HD(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(tl(X)) → TL(mark(X))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
INCR(active(X)) → INCR(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(hd(X)) → ACTIVE(hd(mark(X)))
ACTIVE(adx(cons(X, Y))) → ADX(Y)
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → MARK(X)
ACTIVE(zeros) → CONS(0, zeros)
TL(active(X)) → TL(X)
ADX(mark(X)) → ADX(X)
MARK(hd(X)) → HD(mark(X))
ACTIVE(incr(cons(X, Y))) → S(X)
ACTIVE(incr(cons(X, Y))) → INCR(Y)
S(active(X)) → S(X)
S(mark(X)) → S(X)
INCR(mark(X)) → INCR(X)
ADX(active(X)) → ADX(X)
ACTIVE(adx(cons(X, Y))) → INCR(cons(X, adx(Y)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(incr(cons(X, Y))) → CONS(s(X), incr(Y))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(adx(cons(X, Y))) → CONS(X, adx(Y))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
MARK(adx(X)) → ADX(mark(X))
CONS(active(X1), X2) → CONS(X1, X2)
HD(mark(X)) → HD(X)
MARK(nats) → ACTIVE(nats)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TL(mark(X)) → TL(X)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(adx(X)) → ACTIVE(adx(mark(X)))
MARK(incr(X)) → INCR(mark(X))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
HD(active(X)) → HD(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(tl(X)) → TL(mark(X))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
INCR(active(X)) → INCR(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(hd(X)) → ACTIVE(hd(mark(X)))
ACTIVE(adx(cons(X, Y))) → ADX(Y)
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → MARK(X)
ACTIVE(zeros) → CONS(0, zeros)
TL(active(X)) → TL(X)
ADX(mark(X)) → ADX(X)
MARK(hd(X)) → HD(mark(X))
ACTIVE(incr(cons(X, Y))) → S(X)
ACTIVE(incr(cons(X, Y))) → INCR(Y)
S(active(X)) → S(X)
S(mark(X)) → S(X)
INCR(mark(X)) → INCR(X)
ADX(active(X)) → ADX(X)
ACTIVE(adx(cons(X, Y))) → INCR(cons(X, adx(Y)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(incr(cons(X, Y))) → CONS(s(X), incr(Y))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(adx(cons(X, Y))) → CONS(X, adx(Y))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
MARK(adx(X)) → ADX(mark(X))
CONS(active(X1), X2) → CONS(X1, X2)
HD(mark(X)) → HD(X)
MARK(nats) → ACTIVE(nats)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 13 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TL(mark(X)) → TL(X)
TL(active(X)) → TL(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TL(mark(X)) → TL(X)
TL(active(X)) → TL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HD(active(X)) → HD(X)
HD(mark(X)) → HD(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HD(active(X)) → HD(X)
HD(mark(X)) → HD(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADX(active(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADX(active(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → MARK(X)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(hd(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(active(x1)) = x1   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(hd(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = x1   
POL(tl(x1)) = x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
MARK(tl(X)) → MARK(X)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(tl(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(active(x1)) = x1   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(hd(x1)) = 2·x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 2   
POL(s(x1)) = x1   
POL(tl(x1)) = 2 + 2·x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
MARK(adx(X)) → MARK(X)
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(adx(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(adx(x1)) = 2 + x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(hd(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = x1   
POL(tl(x1)) = 2·x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2)) at position [0] we obtained the following new rules:

MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(tl(X)) → ACTIVE(tl(mark(X)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(adx(x1)) = 1   
POL(cons(x1, x2)) = 0   
POL(hd(x1)) = 0   
POL(incr(x1)) = 1   
POL(mark(x1)) = 0   
POL(nats) = 0   
POL(s(x1)) = 0   
POL(tl(x1)) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

adx(active(X)) → adx(X)
adx(mark(X)) → adx(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
tl(active(X)) → tl(X)
tl(mark(X)) → tl(X)
hd(active(X)) → hd(X)
hd(mark(X)) → hd(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(adx(X)) → ACTIVE(adx(mark(X)))
The remaining pairs can at least be oriented weakly.

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(adx(x1)) = 1   
POL(cons(x1, x2)) = 0   
POL(hd(x1)) = 0   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = 0   
POL(tl(x1)) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
QDP
                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
The remaining pairs can at least be oriented weakly.

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 0   
POL(active(x1)) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = 1   
POL(hd(x1)) = 0   
POL(incr(x1)) = 0   
POL(mark(x1)) = 0   
POL(nats) = 0   
POL(s(x1)) = 0   
POL(tl(x1)) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(adx(x1)) = 1   
POL(cons(x1, x2)) = 0   
POL(hd(x1)) = x1   
POL(incr(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(s(x1)) = 0   
POL(tl(x1)) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.